Пуассон Симеон Дени (21.6.1781-25.4.1840)- французский математик, физик, механик. Член Парижской Академии наук (1812). Родился в Питивье (департамент Луара). В 1798г. поступил в Политехническую школу. Здесь на его способности обратил внимание П. Лаплас, Ж. Лагранж. По окончании курса был оставлен при этом учебном заведении. С 1816г. - профессор в Сорбонне. В области небесной механики важнейшие работы Пуассона посвящены некоторым специальным задачам лунной и планетной теории, а также устойчивости солнечной системы. В теории притяжений особый интерес представляет его мемуар "О притяжении сфероидов" (1835) и статья "Замечания об уравнении теории притяжений" (1813). В 2-томном курсе механики Пуассон развил идеи Ж. Лагранжа и П. Лапласа. Пуассон основательно разработал многие разделы математической физики, дал решений многих задач электростатики и магнитостатики. В 1829г. Пуассон положил начало теории девиации. В его исследования прикладного характера важное место занимают работы по внешней баллистике и гидродинамике. В теории упругости дал общие методы интегрирования уравнений теории упругости, построил уравнение движения при произвольных начальных данных, ввел константу, которая теперь носит его имя. Существенное значение имеют работы Пуассона, посвященные определенным интегралам, уравнениям в конечных разностях, дифференциальным уравнениями с часиными производными, теории вероятностей, вариационному исчислению, рядам. Основательно улучшил способы применения теории вероятностей вообще и к вопросам статистики в частности, а также доказал теорему, которая касалась закона больших чисел (закон Пуассона), впервые воспользовавшись терминов "закон больших числе". В общей теории уравнений Пуассону принадлежит оригинальный метод исключения переменных. В теории рядов он заложил основы современной теории суммирования расходящихся рядов. Пуассон независимо от Ф. Бесселя открыл функции, которые теперь называются бесселевыми, и дал их разложения в полурасходящиеся ряды. В дифференциальной геометрии ему принадлежит работа о кривизне поверхностей.